Crystalline solids have a very regular atomic structure: that is, the local positions of atoms with respect to each other are repeated at the atomic scale. These arrangements are called crystal structures, and their study is called crystallography. However, most crystalline materials are not perfect: the regular pattern of atomic arrangement is interrupted by crystallographic defects. The various types of defects are enumerated here.
Point defects are defects which are not extended in space in any dimension. There is no strict limit for how small a "point" defect should be, but typically the term is used to describe defects which involve at most a few extra or missing atoms without an ordered structure of the defective positions. Larger defects in an ordered structure are usually considered dislocation loops. For historical reasons, many point defects especially in ionic crystals are called 'centers': for example the vacancy in many ionic solids is called an F-center. These dislocations allow for ionic transport through crystals leading to electrochemical reactions which are frequently specified using Kröger–Vink Notation.
- Vacancies are sites which are usually occupied by an atom but which are unoccupied. If a neighboring atom moves to occupy the vacant site, the vacancy moves in the opposite direction to the site which used to be occupied by the moving atom. The stability of the surrounding crystal structure guarantees that the neighboring atoms will not simply collapse around the vacancy. In some materials, neighboring atoms actually move away from a vacancy, because they can form better bonds with atoms in the other directions. A vacancy (or pair of vacancies in an ionic solid) is sometimes called a Schottky defect.
- Interstitials are atoms which occupy a site in the crystal structure at which there is usually not an atom. They are generally high energy configurations. Small atoms in some crystals can occupy interstices without high energy, such as hydrogen in palladium.Schematic illustration of some simple point defect types in a monatomic solid
- A nearby pair of a vacancy and an interstitial is often called a Frenkel defect or Frenkel pair. This is caused when an ion moves into an interstitial site and creates a vacancy.
- Impurities occur because materials are never 100% pure. In the case of an impurity, the atom is often incorporated at a regular atomic site in the crystal structure. This is neither a vacant site nor is the atom on an interstitial site and it is called a substitutional defect. The atom is not supposed to be anywhere in the crystal, and is thus an impurity. There are two different types of substitutional defects. Isovalent substitution and aliovalent substitution. Isovalent substitution is where the ion that is substituting the original ion is of the same oxidation state as the ion it is replacing. Aliovalent substitution is where the ion that is substituting the original ion is of a different oxidation state as the ion it is replacing. Aliovalent substitutions change the overall charge within the ionic compound, but the ionic compound must be neutral. Therefore a charge compensation mechanism is required. Hence either one of the metals is partially or fully oxidised or reduced, or ion vacancies are created.
- Antisite defects occur in an ordered alloy or compound. For example, some alloys have a regular structure in which every other atom is a different species; for illustration assume that type A atoms sit on the corners of a cubic lattice, and type B atoms sit in the center of the cubes. If one cube has an A atom at its center, the atom is on a site usually occupied by an atom, but it is not the correct type. This is neither a vacancy nor an interstitial, nor an impurity.
- Topological defects are regions in a crystal where the normal chemical bonding environment is topologically different from the surroundings. For instance, in a perfect sheet of graphite (graphene) all atoms are in rings containing six atoms. If the sheet contains regions where the number of atoms in a ring is different from six, while the total number of atoms remains the same, a topological defect has formed. An example is the Stone Wales defect in nanotubes, which consists of two adjacent 5-membered and two 7-membered atom rings.Schematic illustration of defects in a compound solid, using GaAs as an example.
- Also amorphous solids may contain defects. These are naturally somewhat hard to define, but sometimes their nature can be quite easily understood. For instance, in ideally bonded amorphous silica all Si atoms have 4 bonds to O atoms and all O atoms have 2 bonds to Si atom. Thus e.g. an O atom with only one Si bond (a dangling bond) can be considered a defect in silica.
- Complexes can form between different kinds of point defects. For example, if a vacancy encounters an impurity, the two may bind together if the impurity is too large for the lattice. Interstitials can form 'split interstitial' or 'dumbbell' structures where two atoms effectively share an atomic site, resulting in neither atom actually occupying the site.
Schematic illustration of some simple point defect types in a monatomic solid
Schematic illustration of defects in a compound solid, using GaAs as an example.
MOISES PINEDA
CI 18694836
CAF BLOG 6
No hay comentarios:
Publicar un comentario