ESTRUCTURA CRISATALINA
LOS TAMAÑOS DE  LOS ATOMOS Y DE LOS IONES
 
De hecho, en un átomo libre, la probabilidad  radial de cualquier orbital mantiene valores positivos para distancias  muy grandes, y desde este punto de vista, cada átomo tendría un radio  infinito. Pero a nivel práctico, la posición de un electrón en un  orbital se limita a la zona de mayor probabilidad radial. Por tanto, es  posible hacer un cálculo de la zona de máxima probabilidad radial de  cada átomo para tener una buena aproximación a sus medidas reales.
Pero en  una estructura cristalina los átomos no están libres, sino enlazados  con otros, y además, hay cierta interpenetración de las capas  electrónicas más externas, que participan del enlace. Por tanto, en una  estructura cristalina se puede definir la distancia de enlace como  aquella que separa los dos centros de dos átomos próximos.
En una aproximación un poco burda es posible admitir que la distancia del enlace es igual a la suma de los respectivos radios iónicos, de manera que:

d = r + r 1 2
Esta idea lleva necesariamente a admitir que el tamaño de los átomos será diferente de una estructura a otra, según sean los enlaces con los otros átomos y según cuales sean los átomos vecinos. De hecho, el tamaño de los átomos varia siguiendo dos factores:
a) el tipo y la polaridad del enlaceb) el número de átomos inmediatamente vecinos (el número de coordinación)
Existen algunas formulas empíricas que aproximan la distancia de enlace en función de los radios atómicos y de la diferencia de electronegatividades (que es una medida de la polaridad del enlace). Schomaker y Stevenson proponen la siguiente
d = r + r - - 1 2 1 2 0.09 c c
En las tablas que se pueden encontrar en muchos libros de Cristaloquímica, los radios iónicos están aproximadamente para una coordinación 6, y si el átomo entra en una estructura con otras coordinaciones hay que aplicar ciertas correcciones, como las que se muestran en la tabla siguiente, donde también se indican las correcciones para enlaces metálicos (el 100% corresponde a la coordinación 12, la más frecuente).

Pero en  una estructura cristalina los átomos no están libres, sino enlazados  con otros, y además, hay cierta interpenetración de las capas  electrónicas más externas, que participan del enlace. Por tanto, en una  estructura cristalina se puede definir la distancia de enlace como  aquella que separa los dos centros de dos átomos próximos.En una aproximación un poco burda es posible admitir que la distancia del enlace es igual a la suma de los respectivos radios iónicos, de manera que:

d = r + r 1 2
Esta idea lleva necesariamente a admitir que el tamaño de los átomos será diferente de una estructura a otra, según sean los enlaces con los otros átomos y según cuales sean los átomos vecinos. De hecho, el tamaño de los átomos varia siguiendo dos factores:
a) el tipo y la polaridad del enlaceb) el número de átomos inmediatamente vecinos (el número de coordinación)
Existen algunas formulas empíricas que aproximan la distancia de enlace en función de los radios atómicos y de la diferencia de electronegatividades (que es una medida de la polaridad del enlace). Schomaker y Stevenson proponen la siguiente
d = r + r - - 1 2 1 2 0.09 c c
En las tablas que se pueden encontrar en muchos libros de Cristaloquímica, los radios iónicos están aproximadamente para una coordinación 6, y si el átomo entra en una estructura con otras coordinaciones hay que aplicar ciertas correcciones, como las que se muestran en la tabla siguiente, donde también se indican las correcciones para enlaces metálicos (el 100% corresponde a la coordinación 12, la más frecuente).

No hay comentarios:
Publicar un comentario